
 1 

A Persistent Chat Space for Work Groups: 
The Design, Evaluation and Deployment of Loops 

Thomas Erickson, Wendy A. Kellogg, Mark Laff,  
Jeremy Sussman, Tracee Vetting Wolf, Christine A. Halverson, Denise Edwards 

IBM T. J. Watson Research Center 
P.O. Box 704, Yorktown Heights, NY 10598 USA 

{snowfall|wkellogg|mrl|jsussman|tlwolf|krys}@us.ibm.com, dc.edwards@verizon.net 
 

ABSTRACT 
Loops is a text-based computer mediated communication 
system aimed at small- to medium-sized corporate work 
groups. We begin by discussing the goals of the system and 
the rationale behind its design, particularly its treatment of 
non-conversational text. Next we describe its realization in 
an implemented system, and discuss how an early working 
version of the system was ‘group tested,’ and the changes 
that lead to. We then discuss its deployment within our 
organization, and provide examples of how it’s used. We 
conclude with reflections on the usage patterns of Loops 
and their implications for the design of similar systems. 

Author Keywords 
CMC, CSCW, Conversation, Chat, Design, IM, Instant 
Messaging, Social Proxy, Awareness, Online Environments 

ACM Classification Keywords 
H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces – Computer supported cooperative 
work, evaluation/methodology, asynchronous interaction, 
synchronous interaction 

INTRODUCTION 
For the last several years we’ve been engaged in designing 
online conversation spaces for distributed work groups. Our 
aim is to design “socially translucent” systems [5, 6] – 
systems that provide a social context for interaction by 
providing cues about users’ presence and activities. We 
claim that such systems can, by taking advantage of the 
human ability to draw inferences from traces of activity, 
support social processes (e.g., imitation; peer pressure) that 
permit groups to function effectively.  

Our approach to making social information visible employs 
two tactics: social proxies and persistent conversation. 
Social proxies are minimalist graphical representations of 
the presence and activity of participants; their aim is to 
provide a sense of the activity in an online system without 
eliminating all vestiges of privacy. Persistent conversation 
refers to text-based computer mediated communication 
(CMC) that persists over time – that is, it is similar to chat 
except that all conversations are logged and are always 
visible to participants.  

Up to this point our work has been embodied in a first-
generation system called “Babble.” Babble is an online, 
conversation-centric system designed to support small to 
medium-size workgroups. In a series of publications we’ve 
described the design of the system [7], the “social 
translucence” rationale behind it [5], and studies of 
deployments and adoption of the system [1]. In most of this 
work we have kept the focus on Babble’s most notable 
feature, its social proxies. 

This paper draws on this previous work, but opens up some 
new areas of discussion. Its primary aim is to describe the 
design and evaluation of a second generation system called 
Loops. This paper focuses on the way in which text has 
been used in unexpected ways in the Babble system, and 
the design of new interface elements for Loops intended to 
support the observed uses. We’ll conclude by discussing 
some of the usage patterns in Loops, and taking a closer 
look at a particular Loops community. 

BABBLE AND RELATED WORK 
Before turning to design issues, we’ll situate Babble and 
Loops relative to other work. While they are not quite like 
any other collaborative environment, they blend features 
from a variety of systems.  

In terms of its functionality, Babble [7] resembles a multi-
room chat system, with three differences. First, the 
conversation in Babble persists across sessions, supporting 
what we call a “blended synchrony” model of chat. That is, 
conversations may be synchronous or asynchronous, with 
their remarks being separated by seconds, minutes, days or 
months. Second, the structure of Babble’s conversation 
space is user-definable: anyone can create, modify, rename, 
or reorganize rooms. Third, Babble uses visual cues to 
enhance its users’ mutual awareness of one another’s 
location, movements and activities, and to alert its users to 
the location of new information in the environment. 

In terms of look and feel, Babble and Loops resemble 
multi-channel chat systems (e.g.,[23]), with their transcripts 
of real time conversation and their lightweight conversation 
model. They are also akin to the instant messaging systems 
that are now widely used in corporate work places [11, 14, 
15], particularly in their ability to support both coordinating 
talk and in-depth work conversation. Babble’s and Loops’ 



 2 

user-extendable set of ‘places’ (i.e., discussion topics) 
resembles that of many online asynchronous conversation 
systems, and has similarities to MUDs and MOOs (e.g., [2, 
3, 4, 21]), in that they persist over time, and support both 
opportunistic encounters and structured events.  

The two tactics that Babble and Loops use to support 
mutual awareness – persistent conversation and the social 
proxy – likewise have a variety of antecedents. Persistent 
conversation hearkens back to the beginnings of online 
community in systems like EMISARI [12] and The Well 
[18], continues in applications like CSILE [20], CaMILE 
[9] and TeamRooms [19], and is most recently manifested 
in web boards and blogs. That text-based conversation is a 
rich source of social information has been well-
documented, especially by Cherny [3], albeit in a non-
persistent case. Second, the social proxies of Babble and 
Loops provide a number of visual cues about users in an 
attempt to provide increased awareness. In this they bear 
similarities to systems that support workspace awareness 
(e.g., [8]), and to work on visualizing chat users [22]. 

DESIGN RATIONALE 
The design of Loops was shaped by our experiences with 
the Babble system. Over the five years of its project life, 
Babble was deployed to about two dozen groups, mostly 
within IBM. Deployments were to three sorts of groups: 
small, close-knit but distributed work groups; large, 
globally distributed communities of interest; and ad hoc 
task-forces that existed for a relatively short period of time. 
Several, though not all, of the deployments were studied 
(see [1, 6]). On the one hand, Babble’s conversation model 
and social proxy seemed quite successful, but on the other 
there were a number of recurring problems that we wished 
to address in the next generation system.  

Retaining and Enhancing What Worked 
Our experience with and studies of Babble left us 
convinced that it got quite a few things right. The principle 
features of Babble that we wished to retain were: 
• The lightweight, blended synchrony, just-start-typing 

conversation model. 
• The social proxy and other features that created an 

awareness of participants’ presence and activity. 
• The sense of history and inhabitation that resulted from 

the persistence of conversation and other activity traces. 

Four New Requirements 
At the same time, our experience with Babble led us to 
several new requirements. 

Supporting Deployment and Updating 
In our five years of work with Babble, we repeatedly 
encountered difficulties in deploying and updating it. The 
Babble client, written in Smalltalk, was 2+ megabytes in 
size; to do an installation or an update, the users (some of 
whom were consultants and sometimes worked over dialup 

lines) had to download and run an install package. This left 
the timing of the install up to each person, and thus installs 
were often staggered across several days. This also made it 
more likely that those who installed Babble immediately 
would log on and, finding no one to talk to, not be inclined 
to return. In short, every release of a major update disrupted 
our users’ communities and ran the risk of causing a 
deployment to fail. We wished to remedy this problem. 

A Changeable Look and Feel 
We wanted to be able to easily alter the look and feel of the 
user interface, and to allow our visual designer to directly 
work in the medium rather than creating design prototypes 
to be reinterpreted by a programmer. As noted by Houde 
and Sellman [13], most development environments do a 
good job of supporting design or programming, but not 
both. We value aesthetics, and wanted our next system to 
provide as much support for iteration in the visual design as 
it did in the functional design.  

Support Membership in Multiple Communities 
Initially, we had envisioned that Babble would be used as 
an online environment for distributed work groups, with 
each group having a single Babble. But as people in a 
workgroup became accustomed to Babble, it was common 
for them to want to adopt it for other uses such as large 
communities of interest that wanted a long-term 
collaborative space, and ad hoc task-forces that needed a 
collaborative space for projects of limited duration. It 
became apparent that those who found Babble useful 
wanted multiple Babbles for use with multiple groups. We 
resolved to address this need in the new system. 

Support ‘Publishing’ of Non-Conversational Text 
Another recurring problem, both in our own use of Babble 
as well as in virtually all of our deployments, was the need 
to ‘publish’ text outside of conversations. Let’s explore the 
genesis of this requirement in more detail.  

To begin with, we need to say a bit more about how 
structure is created in Babble. Just as operating systems 
allow users to create files and folders, so Babble allows 
users to create conversation topics, and categories which 
contain them. Furthermore, users can re-name topics and 
categories, and restructure the resulting hierarchy, just as 
they do with files and folders. Thus, as a Babble 
deployment develops, its structure grows more complex as 
multiple users expand, modify and (rarely) delete elements. 

For the purpose of this paper, we will look at the structures 
of 5 Babble deployments after periods of 6 to 10 months. 
The first row of table 1 shows the total amount of structure 
(the number of conversational topics and categories) 
created in each Babble (these counts exclude automatic 
archives generated by the system, and structure deleted by 
users, the latter being quite rare). The point of interest here 
is that users have created quite a lot of structure, even 
though there are a relatively small number of regular, active 



 3 

users who contribute to conversations (typically 10 to 20, 
but around 30 for B1). Why is this happening? 

To get a better understanding of what was going on, we 
classified the topics and categories created in each Babble. 
The classification was carried out by a single researcher, 
according to a general taxonomy based on our observations 
of various Babbles. We had observed that users created 
topics and categories in Babbles for at least four purposes: 

• To make public announcements. Most often these are 
named “Announcements;” other examples are “Heads 
Up!,” “News,” and “Kittens Free to a Good Home!” 
Often these are positioned (or written in all caps) to 
attract attention. 

• To provide information about events and projects. For 
example, one Babble uses project names as categories, 
and underneath the project name uses topics with names 
like “Current status”, “Meet the project members”, and 
“Tell us what you think!” In general, this approach of 
using some topics to contain static information, and 
designating particular topics as specifically for 
conversation, occurs across all Babble deployments. 

• To create office’s or “personal places.” Offices are 
topics, or, most often, hierarchies of categories and 
topics, that ‘belong to’ and are named after a user. 
Offices are used in a manner similar to blogs; users 
typically provide information about themselves, may post 
essays or work in progress, and encourage ‘visitors’ to 
leave comments. A common form for an office is: 

Bob’s Place 
 About Me 
 Talk with Me 
 

The first item is a category that contains two topics: a 
profile of Bob, and a place for leaving notes or chatting. 
Offices might contain other topics such as a “My 
schedule” or “Contact information.” 

• As places for public conversation. These categories and 
topics are intended for public conversation. They include 
the “Common’s Area,” the default topic in all Babbles, 
and other user-created topics, examples being “Bad 
Jokes,” “IRL” (in Real Life), and “Knowledge 
Management.” These categories and topics exemplify the 
way we envisioned Babble being used  

Table 1 shows, for each Babble, the number and percentage 
of categories and topics that fall into each of these classes. 
The principle finding, for the purposes of this paper, is 
depicted in the last row of Table 1: the percentage of 
structure devoted to supporting public conversation ranges 
from 21 to 61 percent. (And this estimate is a maximum: 
this classification also includes topics and categories used 
for purposes other than the four listed above, although other 
non-conversational types of use are rare.)  

The takeaway is rather paradoxical: in Babble, conversation 
topics are often not used for conversation; rather, a 

significant amount of user-created structure is devoted to 
‘publishing’ non-conversational text. There are two inter-
related issues: visibility and accessibility. With respect to 
visibility, users sometimes wish to make some non-
conversational text prominent. The most obvious example 
is using “Announcements” as a topic name, which both 
signals its content and positions it at the top of the 
alphabetically sorted list. More generally, all five Babbles 
exhibit attempts to make some topics more prominent by 
using numbers or punctuation characters as prefixes to 
control their sorting order. Even when high visibility is not 
required, users often wish to create non-conversational text 
that is easily accessible – that is, visible as soon as another 
user enters the topic, rather than being ‘submerged’ in a 
stream of conversation. To achieve these ends users employ 
a number of naming tactics to deter others from adding 
comments to a topic1: occasionally the topic name explicitly 
indicates others should not talk (e.g., “About Me (read 
only),” but more often users juxtapose topics (as in the 
“Bob’s Place” example), where one is clearly marked to 
indicate that it is intended for conversation. Other examples 
include “My Schedule” / ”Chit Chat,” “Interview with Bob” 
/ ”Audience Questions,” and “<Project Name> Status” / 
“Discuss <Project Name> here.” To summarize, throughout 
the deployments users are doing more than creating places 
to talk: they are trying to ‘publish’ non-conversational text, 
and using a variety of naming tactics to ensure that their 
text has the visibility and accessibility it merits.  

Summary of Design Rationale 
The design of Loops was shaped by a confluence of factors. 
We felt that Babble’s mechanisms for supporting 
conversation worked well, and wished to retain them. At 
the same time, our experiences in deploying Babble and 
observing its use over the long term, provided new design 
requirements that shaped the design of the Loops system in 
several ways. First, the requirement for supporting easy 
deployment and updating pushed us in the direction of 
creating a web-based application. Keeping the application 
code entirely on a server, eliminated the problems of 
requiring users to download and install new versions of the 
application, and of keeping users in sync. Second, the 
requirement for an easily changeable look and feel, in 
tandem with the decision to go with a web-based 
application, led us to implement the Loops client in 
Macromedia’s Flash®, an environment that allowed us to 
create sophisticated interactive animations that can play in 

                                                        
1 An alternate way of avoiding this sort of problem is to 
provide means for users to control write (etc.) access to 
their topics. Babble and Loops have avoided this approach, 
because one of the goals of the underlying research 
program is to explore the extent to which social 
mechanisms – for example, the development of norms 
amongst mutually visible and known participants – can 
eliminate the need for rigid technical mechanisms. See [1, 
5, 7]. 



 4 

browsers. Finally, the third and fourth requirements – 
support membership in multiple communities and support 
‘publishing’ of non-conversational text – were addressed in 
the user interface, which we turn to next. 

THE LOOPS SYSTEM 
Loops consists of a set of user-definable places, each of 
which can contain a conversation, URLs, visible non-
conversational text, and people, as well as user interface 
elements for seeing who is present, viewing, navigating and 
modifying the environment. The user experience is that 
people log in to a Loops server and move from place to 
place, reading conversations that have changed in their 
absence, contributing new comments, and encountering 
other users as they do so. As with Babble, the ultimate goal 
is that Loops feel like an inhabited place where users may 
‘hang out’ during the day as they work on their computers, 
or into which they may occasionally venture to see what has 
happened in their absence. 

An Overview of the User Interface 
The user interface elements of Loops are shown in figure 1: 
1. The social proxy depicts people as dots, showing who 

and how many are in the place and their activity levels. 

2. The chat pane is where those in the place ‘talk.’  
3. Each place can have slide-out tabs that can contain 

publicly viewable and editable text and URLs.  
4. The places list shows the places, indicates which have 

new content, and provides a menu of place commands. 
5. The people list shows those logged in, and provides a 

menu of person-oriented commands. 
6. Each place has a bulletin board that is viewable and 

editable by all those in the place.  
More holistically, figure 1 shows the “SCG” Loop 
“Commons.” The social proxy (1) shows that there are five 
people in the Commons place, three of whom are actively 
talking in the chat pane (2). From the point of view of the 
user whose screen we are seeing, there is no new content 
elsewhere in the Loop – otherwise there would be red 
indicators next to other places in the places list (4). The two 
tabs (3) contain a list of telephone numbers for the Loop’s 
members, and a dial-in number and access code for the 
group’s weekly conference call. The bulletin board (6) 
contains a reminder of an upcoming meeting, with text 
stating that it has been cancelled, and a subsequent reaction.  

 
Figure 1. The Loops user interface, including 1) a visualization of the presence and activity of participants, 2) a chat area the 
supports synchronous or asynchronous conversation, 3) public slide out tabs that can hold editable text and URLs; 4) a list of 

places, 5) a list of people who are present, and 6) a public bulletin board the can contain editable text and URLs. NB: The image 
has been edited to remove about a third of its height; the gray circles and rectangles are callouts and not part of the interface. 



 5 

Now we will take a somewhat more in-depth look at 
functionality.  

Awareness and Conversation 
Because the awareness and conversation models of Loops 
are derived from the Babble system, and are not the focus 
of this paper, we’ll keep our remarks brief.  

The chief awareness interface element is the social proxy 
(callout 1, figure 1). The circle represents the place being 
viewed; the colored dots represent people. A dot shown 
inside the circle means that that user is in the current place; 
when users are active (meaning that either they type or 
click) their dots move to the inner (white) core of the circle 
(as with the dots at 1, 3 and 8 o’clock), and then, over the 
course of 15 minutes, they drift to the edge of the circle (as 
with the dots at 5 and 10 o’clock). Mousing over a dot 
reveals the name of the user, and mousing down on a dot 
brings up a menu of commands for either changing one’s 
preferences (if it’s one’s own dot), or for interacting with 
other users (if it’s another’s dot).  

Loops also contains a timeline, a social proxy (figure 2) that 
shows who has been present over the last week, and how 
often they have spoken. In this proxy, each user is 
represented in a row: they leave a flat line if they are 
present, and they make a blip when they speak. Thus, the 
timeline in figure 2 shows six people, all of whom have 
spoken between 12:00 and 14:00. Mousing over the lines, 
as with the other proxy, reveals information about the 
speaker and time and place of speaking, and mousing down 
brings up a command menu. This proxy opens in a separate 
window; it appears to be most frequently used by those who 
are (formally or informally) in the role of running the 
community. 

The persistent chat pane (callout 2 of figure 1) displays a 
conversation as a time-stamped list of comments in a single 
window, enabling either synchronous or asynchronous talk. 
Comments are added by clicking on the “speech bubble” 

button at the bottom of the chat pane, or simply by 
beginning to type; this brings up a floating window in 
which the comment may be composed. The use of a 
floating composition window – unlike that provided by 
many synchronous chat clients – is to enable those writing 
comments to move from place to place while composing a 
comment, thus making it easier to compose synthetic or 
integrative comments. Once a user posts a comment, it 
immediately appears in the conversation. For users who are 
in other places, the name of the place turns red to indicate 
the new content, and when they enter the place, chat text 
that is new since their last visit is shown in red. 

Bulletin Boards and Tabs for ‘Publishing’ Text 
Loops tabs and bulletin boards are the design response to 
the requirement to provide a means of publishing non-
conversational text.  

Bulletin boards (figure 1, callout 6) provide a means for 
posting text and URLs in a highly visible place. Each place 
has its own bulletin board, and its text may be edited by 
anyone in the place. When new or changed text is posted to 
a bulletin board, the new text is signaled to those in the 
place by the background color of the bulletin board fading 
out and then fading back in with the new text displayed. If 
there is more text than fits in the visible area of the bulletin 
board, a scroll bar appears. We anticipated that bulletin 
boards would be used for purposes ranging from 
announcements and reminders (as seen in figure 1), to 
MUD-like scene setting (e.g., “You see a messy office.”), 
based on our observations of Babble usage. 

Likewise, tabs (figure 3) provide a place for non-
conversational text that needs to be accessible, but doesn’t 
need to be made as obvious. The tabs peek out from behind 
the conversation pane. Clicking on the tab causes it to slide 
out, revealing the (editable) text on it. Each place can 
contain up to three tabs; places begin without tabs, and 
users can create them by pressing the “+” button (above the 
top tab in figure 1). The lower part of each tab (not shown) 

 
Figure 2. The Loops timeline proxy shows the last week’s worth of activity, with each user 

 represented in a single row; mousing over traces shows the name and location of that user at that time 



 6 

provides access to controls for setting its background color, 
clearing its content, and deleting the tab. We expected that 
tabs would be used for activities such as sharing schedules 
(as in figure 3), lists of URLs, and keeping to do lists. 

The Loops Launcher 
Finally, figure 4 shows the Loops launching screen, the 
design response to the requirement for supporting 
membership in multiple communities. It provides a single 
location where users of multiple Loops can sign on once 
and access all Loops of which they are members. It also 
provides a place where Loops users can create their own 
Loop (via the “Administration” menu). The new Loop is 
automatically set up, and the creator can designate who has 
access to it (provided they are a member of another Loop; 
otherwise a system administrator has to add them to the 
Loops server). We had hoped to have each Loop’s icon 
reflect its degree of activity, but this was not possible 
during our implementation time frame. 

THE DEVELOPMENT AND EVALUATION OF LOOPS 
Loops went through a period of iterative development and 
evaluation. Early versions were prototyped and tested by 
the development team using well known methods (e.g., 
[24]). However, at some point feedback is needed from a 
broader constituency. As Herbsleb et al. [11] have noted, a 
dilemma plagues groupware developers: how do developers 

gather user input for applications whose user experience is 
fundamentally a collective one, when the preliminary nature 
of the software is such that it is likely to deter collective 
adoption? Our response to this dilemma was to run user 
tests in which our ‘users’ were existing groups. We decided 
that we would invite pre-existing groups, with experience 
interacting online, to use our system for a limited time trial 
that we termed a “test drive.”  

The Test Drives 
We identified and recruited two groups for our test drive. 
One, Netweavers, was an existing Babble community with 
a couple of dozen core members; the other, Trellis, was a 
small group of four, two of whom had a well established 
mechanism for remote collaboration involving the use of 
instant messaging and the telephone. Because the 
Netweavers’ organizer was concerned about disrupting the 
community, we agreed to a limited time trial of four days.  

Our primary method of gathering information during the 
test drives was to observe and participate, noting 
confusions, questions, comments, and signs of emerging 
practices. Since many people were typically present at the 
same time, and since they had been explicitly asked to 
provide feedback, critiques often took on a dialectic 
character. Sometimes agreement about problems emerged 
quickly; at other times disagreements arose and led to 
discussions revealed differences in assumptions, values, etc. 

We also analyzed log files and the Loops’ conversations to 
obtain a more quantitative picture of what occurred. Over 
the 4 days of the test drive, 26 people accessed the 
Netweavers Loop, created their own accounts, and spent 
time there, trying out features, providing feedback, and 
engaging in the combination of banter and wide-ranging 
discussion that characterizes online activity in the 
Netweavers’ Babble. The Trellis test drive was more open-
ended: the results reported here come from about two 
weeks of use, almost entirely from the 2 most experienced 
collaborators, though all 4 members logged in at least once.  

In general, both groups made extensive use of Loops. 
Between them, the Netweavers and Trellis groups produced 
approximately 42,000 words (or 3,300 and 5,000 words per 
day of use, respectively). Individuals varied considerably in 
their usage patterns, but the median user logged on to 
Loops 3 times, and spent about 3 hours on line. We took the 
number of users, frequency of use (including return visits), 
and amount of content produced as a sign that the system 
was basically usable. 

To get a clearer picture of users’ preferences and priorities, 
we printed out transcripts of all discussions (about 42,000 
words of text), and did a rough content analysis to identify 
problems, controversies and suggestions. This generated a 
list of 126 comments (82 from Netweavers and 44 from 
Trellis, with some overlap). From this we developed a 
structured survey that could be completed in no more than 
10 minutes. The main portion of the survey made four to 

 
Figure 4 [cropped]. The Loops Launcher provides a view of all 
Loops communities hosted by a server; it provides single sign-

on access to users of multiple communities.  

 
Figure 3 [cropped]. Two tabs: one fully opened, 

 the second sliding out over the first. 



 7 

five statements about each UI element, and used a 7-point 
scale to quantify agreement; the survey concluded with 
open ended questions, including queries about which 
interface elements merited the most screen space. The 
survey was emailed to the 30 participants shortly after the 
end of the Test Drive; 22 completed the survey.  

The results confirmed our impression from the test drive 
that Loops was basically usable. One question (directed to 
the 17 Babble users who participated) showed a preference 
for Loops over Babble (14 agreeing, 2 neutral, 1 
disagreeing), provided its performance problems and 
obvious bugs were addressed. The test drive also provided 
information about details of the design. Among the things 
we discovered were that people wanted a wider chat pane, 
smaller bulletin boards, better performance, page-at-a-time 
scrolling, and changes to other details of the interaction 
design. These were subsequently implemented (NB the user 
interface shown in the previous section reflects these and 
other changes based on the test drive results). 

With respect to the non-conversational text publishing, the 
test drive provided us with useful information about tabs 
and bulletin boards. The survey showed positive responses 
to both tabs and bulletin boards: 50% agreed that tabs were 
useful (9% disagreeing and 27% neutral), and 68% agreed 
that bulletin boards were useful (9% disagreeing and 14% 
neutral). While it is wise to be cautious about users’ 
positive reactions to new interface features before they have 
had time to live with them, the fact that most of the test 
drive participants were experienced Babble users left us 
cautiously optimistic. Going into the test drive we were also 
concerned that participants might think that the tabs and 
bulletin boards were private spaces, rather than areas that 
all users could read – however 68% and 64%, respectively, 
reported no initial confusion. 

One other aspect of the survey – which is, to our 
knowledge, novel – is that we also administered it to the 
development team. We decided it would be interesting to 
take the survey ourselves, answering not with our opinions, 
but with our intuitions about what users would say. Our 
self-survey was the same as that administered to the users, 
except that the standard 7-point scale was extended to 
provide two other ratings: “all over the map”, for when we 
thought users would have a variety of opinions; and “no 
idea”, for when we didn’t think we knew what users would 
say (although the “no idea” idea rating was used very 
rarely!). The results were that the team’s intuitions were 
correct for 7 of 25 questions and incorrect for 11 of the 25 
questions; for the remaining 7 questions, the team itself did 
not agree on how users would respond. This addition to the 
survey process provides a nice indication of its value as a 
design tool, and helps counter the post hoc tendency to 
believe that the user study results were ‘obvious.’ 

DEPLOYING LOOPS 
Although the test drive was helpful in fixing usability 
problems, the short term nature of the test drive doesn’t 

allow us to establish whether or how the new non-
conversational features of Loops are useful to work groups. 
Thus, we moved on to deploy the system and observed its 
use under more realistic conditions. We begin by describing 
some of the ways in which Loops users have been observed 
to use the tabs and bulletin boards. Then we turn to the 
question of the overall success of Loops deployments, and 
provide a profile of one of the most successful Loops. 

Usage of Tabs and Bulletin Boards 
In general, tabs and bulletin boards have been used much in 
the way we envisioned.  

Bulletin boards are typically used for announcements; 
figure 5 shows three examples. The second example (under 
“Important Dates”) is a typical one: it states the time and 
call in number for a recurring phone meeting. The first and 
third examples are more interesting. The first shows the 
bulletin board being used to arrange meetings. Here, one 
person has proposed a set of possible times for a meeting. 
Initially the organizer put a “1” next to each time, 
indicating that she could make each; others came along and 
incremented the numbers as was appropriate. Later, another 
user added a plus sign as away of indicating that a time was 
preferred. The third example shows a similar case, except 
here participants are initialing the announcement to indicate 
agreement. Note that there is no way to identify who has 
written what on the bulletin board, and thus this type of use 
requires everyone to trust that their colleagues will not 
‘cheat’ by casting multiple ‘votes’ or forging initials. While 
we’ve observed other more ludic uses of bulletin boards – 
drawing character graphics pictures, playing tic-tac-toe 
(very awkwardly) – most uses are for announcing meetings 
and reminding of deadlines. 

Tabs function similarly to bulletin boards, though they are 

 
Figure 5. Two forms of bulletin board usage on one bulletin 

board: voting for a meeting time (top and bottom), and 
announcements (middle). 

 



 8 

not used for announcements or scheduling. Generally they 
are used for lists (of phone numbers, emails, URLs), 
schedules, and (occasionally) for rough notes. Occasionally 
attempts have been made to use them as a collaborative 
editing tool: In one case, tabs were used to compose a piece 
of text, with the chat pane being for question, answers and 
comments. However, as tabs do not provide an edit lock, 
support any sort of rich text, and indeed provide only a 
narrow writing area, this has not proved to be a viable use.  

While these uses of tabs and bulletin boards are nothing out 
of the ordinary, they provide a useful boost in functionality, 
particularly in tandem with the other features of Loops. For 
example, one might find a Loops place devoted to a 
particular project, where the bulletin board is used to 
announce the next meeting time, a tab holds the number and 
passcode for the conference call, and the chat pane is used 
to take notes as the meeting occurs.  

Deployments 
Loops has been deployed to about six groups.2 The success 
of our deployments has been mixed, although it is a bit 
difficult to specify what counts as success. There are at 
least three possible definitions of success: that the system is 
sufficiently functional that the group is able to use it to 
interact; that the system enables the group to achieve one or 
more goals; or that the system, once taken up, becomes part 
of the group’s practice and is used for as long as the group 
exists. Each of these definitions has problems. If the system 
is usable but doesn’t meet the needs of the group, it is a 
rather weak definition of success. If the system enables the 
group to achieve one or more goals, success depends on 
how ambitious the goal is – supporting a two hour 
brainstorming session is easier to achieve than providing a 
permanent online group meeting space; it is also the case 
that the members of a group may have multiple, and even 
differing, goals. Finally, if we define success as permanent 
adoption by the group, we rule out legitimate uses for 
limited duration activities; we also have the difficulty of 
deciding when to declare adoption permanent, and how 
long to wait until declaring that a deployment has failed 
(which, as we shall see, is a non-trivial decision). 

For the purposes of this paper, we will consider the first and 
last definitions. For the first, sustained usage, we will count 
a deployment as successful if it has continued activity for 

                                                        
2 It is not always clear what to count as a deployment. 
Anyone who is a member of any Loop has the ability to 
create a new Loop from the Loops Launcher page; thus, it is 
possible to quickly generate a Loop for a person or group 
interested in a demo, although they have no intention of 
using it for a long period. Here we use the term deployment 
for cases in which we went through a dialog with the 
prospective users, identified a facilitator, and made sure that 
the facilitator circulated a welcome message with usage 
instructions and advice on running a community.  

eight weeks or longer. This admittedly arbitrary metric is 
based on our experience with Babble deployments, where 
we found that most Babbles would experience usage 
activity for the first several weeks, and that at about the six 
week mark we would see either a drop off in activity 
leading to the demise of the deployment, or a continuation 
of activity for a much longer period of time [1]. In terms of 
this metric, five of the six Loops we’ve fully deployed have 
been successful. In terms of the last definition of permanent 
use, three of the six are successful. 

Is this good or bad? It’s not clear. Rather surprisingly, we 
know of no studies that report adoption rates for groupware 
applications (by any measure of success). We do know that 
adoption of even proven applications is a non trivial process 
affected by variables ranging from individual factors (e.g., 
17] to social and organizational factors [16]. Certainly, in 
our own experience it is not uncommon for attempts to 
make use of shared databases (within our organization) or 
mailing lists (outside of our organization), to begin with a 
burst of activity only to quickly subside into non-use. 
Clearly, more investigation is called for. 

A Close Look at a Successful Deployment 
In this section we take a close look at a successful 
deployment to a group we will call Fargo. Fargo is 
interesting for two reasons: first, although successful, it’s 
usage patterns deviated from our expectations; and second,  
it provides a good example of a sophisticated use of tabs 
and bulletin boards to do project management tasks that 
would have been difficult to carry out in Babble.  

Fargo is a team of about 28 people distributed over 5 sites: 
New York; North Carolina; Japan, India and Zurich. The 
team is involved in a software development project, and 
includes managers, programmers and testers. Fargo does 
major code releases every six months, and incremental 
build releases every one to three months. 

We used a combination of methods to study Fargo. First, 
we surveyed the Fargo team before Loops was deployed to 
understand their relationships with each other, and their 
knowledge of other team members. Second, we analyzed 
the conversation in Loops, and (drawing from log files) the 
various contributions and edits to the tabs and bulletin 
board, as well as more general activity (logins, idle times, 
etc.) Third, we examined the contents of two databases the 
Fargo used to manage its project. Finally, we conducted 
semi-structured interviews with three Fargo members who 
happened to be in our geographic area. (A more detailed 
report of Fargo’s use of Loops may be found in [10].) 

Fargo is an interesting case to look at because it is an 
example of a successful Loop that, by our first definition, 
had failed. This can be seen in figure 6, which shows a ten 
month segment of Fargo’s posting patterns. What we see is 
that at the end of its first two months, Fargo’s posts had 
dropped to nearly zero, and continued at a low level for the 
next two months. At the end of the fourth month we had 

 
Figure 6. Posts per week (in hundreds of posts) in Fargo 

 over the first 10 months 



 9 

concluded that Fargo had died, and were therefore quite 
surprised, a few weeks later, to receive an urgent call from 
the Fargo facilitator during a server outage.  

As it turned out, the Fargo team was using Loops quite 
vigorously, but only during the weeks when they were 
approaching a code release and needed to communicate as 
quickly and widely as possible. At other times, the 
members of Fargo, especially the programmers, abandoned 
Loops and used more asynchronous means of 
communication. And at still other times, Loops was used 
primarily for reading rather than talking. For a fuller 
account, see [10]. 

Fargo is also interesting because of the team’s use of tabs 
and bulletin boards. For example, the Fargo Commons 
room bulletin board was heavily used during their first 
build cycle. Over a one week period (during which we were 
monitoring its use) the bulletin board was used for 
announcements of build dates and “burning issues,” with 
updates 2 to 3 times a day (all but two of these posts were 
made by Fargo’s manager). During this period, the tabs 
were not used for any substantive purpose. However, in the 
next build cycle, the group developed a more sophisticated 
use of tabs and bulletin boards. As in the first phase, the 
Fargo manager used the bulletin board to keep track of the 
build dates. However the other information relative to the 
build was moved to the tabs. This included the burning 
issues (now titled “key issues”, and soon to be renamed 
“action items”), and also lists of known problems, and 
information for the documentation. It is also interesting to 
note that during the lulls shown in Figure 6, activity did not 
entirely stop: people continued to log in, and in fact there 
was a significant amount of activity involving opening (and 
presumably reading) tabs. It turns out that as the project 
approached completion, new members – responsible for 
product management tasks such as documentation – were 
joining the Loop, and accessing the tabs to learn about the 
state of the project.  

CONCLUSIONS 
In this paper we describe the design of Loops, a second-
generation web-based conversation environment designed 
for corporate work groups. Beginning with the design 
rationale derived from our experience with the first 
generation system, we describe the resulting system and the 
ways in which it addressed the rationale. We take a number 
of lessons away from our work on Loops. First, we believe 
that effort to create niches for ‘publishing’ non-
conversational text in our conversation environment is a 
clear success. All deployments have made some sort of use 
of these textual niches. We are also struck by the degree to 
which simple editable text, and the ability to have 
conversations about its use, can support sophisticated use, 
such as the group scheduling example. Of course, this sort 
of use is dependent on agreement (and trust) amongst those 
so using it, but the fact that this can substitute for technical 
mechanisms (e.g., user authentication, controls to keep one 

person from voting more than once) is interesting. Looking 
at the Fargo example, we note that the ability to place text 
in a prominent place, where it is not buried in the 
conversational stream, is useful not only for those who are 
currently using the system, but for those who come by later.  

More generally, our experience with Loops deployments 
suggests that even amidst the proliferation of computer 
mediated communication tools in corporate environments – 
email, instant messaging, and now blogs and wikis – there 
is still an important role for group conversational 
environments. However, our experience with Fargo 
suggests that our initial focus on designing online 
environments as places for community may have led us 
somewhat astray. While providing a permanent online 
space for a group is certainly a valuable end, it is becoming 
increasingly clear that this is not the only usage model. 
Fargo uses its Loop as a war room; it moves in for one 
phase of its development cycle, and then abandons it for 
other communication channels (which often means little 
communication among the more disparate parts of the 
team). We can point to other uses of Loops and Babble that 
have similar characteristics, although there Loops functions 
more as a one time meeting place for ad hoc groups. 

If we relax the notion of Loops being a space for an online 
community, a place where people hang out and to which 
they return day after day, it suggests a number of directions 
for future work. First, it should be as easy to create and 
enter a Loop as it is to grab an unoccupied meeting room. 
While we have made some strides in this direction, we need 
a lighter weight way of adding new members to the Loops 
environment. Second, it should be easy to bring material 
into a Loop, work with it there, and take it away afterwards. 
As Loops is now, cut and paste is the primary import and 
export mechanism; this does not seem adequate. Third, 
Loops’ simple membership model – you’re either in the 
community or you’re not – needs to become considerably 
more sophisticated. If a Loop becomes more like a meeting 
room, there is a greater need for roles – and their 
accompanying privileges and responsibilities – than there is 
in a tight knit community. Finally, to the extent that Loops 
is to function as an occasionally occupied space, as is the 
case with Fargo, it needs mechanisms for alerting 
participants when activity resumes after a lull. 

ACKNOWLEDGEMENTS 
Thanks to Cal Swart who maintains our servers, anonymous 
reviewers of a previous version of this paper, and our users. 

REFERENCES 
1. Bradner, E., Kellogg, W, & Erickson, T. Bradner, E., 

Kellogg, W, & Erickson, T. The adoption and use of 
Babble: A field study of chat in the workplace. Proc. 
ECSCW 1999. Kluwer, 1999, 139-158.  

2. Bruckman, A. & Resnick, M. The MEDIAMOO project: 
Constructionism and professional community. 
Convergence, 1(1) 1995. 



 10 

3. Cherny, L. Conversation and community: Chat in a 
virtual world. CSLI Publications, 1999. 

4. Churchill, E. F. and Bly, S. Virtual environments at 
work: Ongoing use of MUDs in the workplace. 
Proceedings of the International Joint Conference on 
Work Activities Coordination and Collaboration, 1999, 
99-108. 

5. Erickson, T. and Kellogg, W.A. Social Translucence: 
An approach to designing systems that mesh with social 
processes. ACM Transactions on Computer-Human 
Interaction. 7(1), 2000, 59-83.  

6. Erickson, T. and Kellogg, W.A. Knowledge 
communities: Online environments for supporting 
knowledge management and its social context. Sharing 
expertise: Beyond knowledge management (eds.  
Ackerman, Pipek, Wulf). MIT Press, 2003, 299-325. 

7. Erickson, T. Smith, D. N., Kellogg, W. A., Laff, M. R., 
Richards, J. T., and Bradner, E. Socially translucent 
systems: Social proxies, persistent conversation, and the 
design of ‘Babble.’ Proc. CHI 1999. ACM Press, 1999, 
72-79. 

8. Gutwin, C., Greenberg, S., and Roseman, M. Workspace 
awareness support with radar views. Ext. Abstracts CHI 
1996, ACM Press, 1996, 210-211 

9. Guzdial, M. Information ecology of collaborations in 
educational settings: Influence of tool. Proc. CSCL 
1997, 83-90. Toronto, Ontario, Canada. 

10. Halverson, C., Erickson, T. and Sussman, J. What 
counts as success? Punctuated patterns of use in a 
persistent chat environment. Proc. GROUP 2003. ACM 
Press, 2003. 

11. Herbsleb, J.D., Atkins, D.L., Boyer, D.G., Handel, M. 
and Finholt, T.A. Introducing instant messaging and 
chat in the workplace. Proc. CHI 2002. ACM Press, 
2002, 171-178. 

12. Hiltz, S.R. and Turoff, M. The network nation: Human 
communication via computer. Revised edition, MIT 
Press, 1993. 

13. Houde, S. and Sellman, R. In search of design principles 
for programming environments. Proc. CHI 1994, ACM 
Press, 1994, 424-430. 

14. Issacs, E., Walendowski, A., Whittaker, S., Schiano, D. 
and Kamm, C. The character, functions, and styles of 
instant messaging in the workplace. Proc. CSCW 2002. 
ACM Press, 2002, 11-20.  

15. Nardi, B., Whittaker, S., and Bradner, E. Interaction and 
outeraction: Instant messaging in action. Proc. CSCW 
2000. ACM Press, 2000, 98-88. 

16. Orlikowski, W. Learning from Notes: Organizational 
issues in groupware implementation. Proc. CSCW ‘92: 
ACM Press, 1992, 362-369. 

17. Orlikowski, W.J., Yates, J., Okamura, K., Fujimoto, M. 
Shaping electronic communication: The meta-
structuring of technology. Organization Science, 6(4), 
July-August 1995 

18. Rheingold, H. The virtual community. Addison Wesley, 
1993. 

19. Roseman, M. and Greenberg, S. TeamRooms: Network 
places for collaboration. Proc. CSCW 1996, ACM Press, 
1996, 325-333. 

20.  Scardamalia, M., Bereiter, C., McLean, R.S. Swallow, 
J. & Woodruff, E. Computer-supported intentional 
learning environments. Journal of Educational 
Computing Research, 5(1), 1989, 51-68. 

21. Schlager, M., Fusco, J., & Schank, P. Cornerstones for 
an on-line community of education professionals. IEEE 
Technology and Society Magazine, 17(4), 1998, 15-21. 

22. Viegas, F.B. and Donath, J. Chat circles. Proc. CHI 
1999, ACM Press (1999), 9-16. 

23. Werry, C.C. Linguistic and interactional features of 
Internet Relay Chat. In S. Herring (Ed.), Computer-
mediated communication: Linguistic, social and cross-
cultural perspectives, 1996, John Benjamins, 47-63. 

24. Wolf, T.V., Rode, J.A. and Kellogg, W.A. Dispelling 
design as the ‘black art’ of CHI. Proc. CHI 2006, ACM 
Press, 2006, 521-530. 

 


