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Abstract—As machine learning (ML) becomes increasingly
popular, developers without deep experience in ML – who we will
refer to as ML practitioners – are facing the need to diagnose
problems with ML models. Yet successful diagnosis requires high-
level expertise that practitioners lack. As in many complex data-
oriented domains, visualization could help. This two-phase study
explored the design of visualizations to aid ML diagnosis. In
phase 1, twelve ML practitioners were asked to diagnose a model
using ten state-of-the-art visualizations; seven design themes were
identified. In phase 2, several design themes were embodied in
an interactive visualization. The visualization was used to engage
practitioners in a participatory design exercise that explored how
they would carry out multi-step diagnosis using the visualization.
Our findings provide design implications for tools that better
support ML diagnosis by non-expert practitioners.

I. INTRODUCTION

Machine learning (ML) is a powerful tool for analyzing
and predicting data. An ML model is created by running an
ML algorithm on example inputs in order to make predictions
about the value of a variable (or set of variables). Data consists
of a set of instances with features, for example a dataset where
each data instance is a student and the model is predicting
overall grade for subsequent years might have features such
as age, years of study, grade for previous years, etc. The
performance of the model is tested on a data set for which the
correct predictions are known. Model builders can examine
content of data or parameters of a model to diagnose why a
model is not doing a good job of making correct predictions,
i.e. why the model is not performing well. Diagnosis can result
in changes to the model input such as deciding on particular
data features to leave out, or cleansing the data to remove
bad values. The aim is to select features that given the ML
algorithm being used lead to the best predictions overall.

Machine learning is rapidly spreading across research and
application domains [1], [2]. We envision a day when ML
models are a common component of software of all kinds,
and, consequently, a day when ordinary developers will need
to incorporate ML into their applications. We will refer to these
developers – who have expertise in software development but
*not* expertise in ML – as machine learning practitioners. Ex-
amples include software engineers who develop applications
that need machine learning support, and researchers who use
ML models to analyze their data. Our chief concern in this

paper is to explore ways of supporting these ML practitioners
as they incorporate ML models in their applications.

Too often, ML practitioners report difficulty in using ML
[2] to develop models with acceptable levels of performance.
What the model is doing is often opaque to them [3], and
the model’s performance and error sources may seem dis-
connected [4]. As a result, non-expert ML practitioners may
flounder without support for helping them identify, prioritize
and remediate errors and sources of errors. For example, when
an ML model performs poorly, the ML practitioner needs
to diagnose the problems and take remedial actions, such as
cleansing the training data to remove bad values, or deciding
to discard particular data features.

This problem has captured the attention of both the HCI
community and the ML community. Several papers highlight
the need to lower the barrier to non-expert use of ML, e.g.
[5], [6], others call for tools to be developed to aid diagnosis,
e.g. [4], [6]. Aodha et al. [1] suggested that a more intuitive
interface and visualization be provided to enable users to tune
a model without understanding details of model parameters.
Amershi et al. [7] call for increased collaboration across the
fields of human computer interaction and ML as this will
benefit both communities.

Limited work has been done to understand and support ML
diagnosis. Patel et al. [2] conducted an observation study and
identified the difficulties software developers encountered, but
they were limited in providing design guidelines for supporting
tools. In the report of several tools that have been developed,
such as [4], [8], the authors focused more on demonstrating
what design features were developed than on explicating why
those design features were important and how they enabled
diagnosis.

In this paper, we present our design process and results of
a two-phase design study. We started with a “static” probe
study with twelve ML practitioners, in which we probed for
users’ reactions to ten visualizations published in previous
literature. We then summarized our findings into seven design
themes. Based on the findings, we prototyped an interactive
visualization embodying several of the design themes and
used this to engage users in further participatory design. This
paper explicates our design process and how we embody the
resulting design rationale in an early prototype. Our novel
contributions include: 1) an investigation of user needs in978-1-5090-0252-8/16/$31.00 c© 2016 IEEE



ML diagnosis through both static and interactive design probe
studies and 2) a set of design themes to help inform the design
of future supporting tools for ML diagnosis.

II. RELATED WORK

A. Empirical studies of machine learning diagnosis

Empirical study of ML practices provides first-hand infor-
mation that could inspire and ground tool design. Although
we can find “best practices” or general principles of ML in
textbooks and relevant literature, real world practices may
differ due to, for example, data corruption and time pressure.
Additionally, non-experts could have developed their own
way to approach ML, which may not match exactly with
professional practice. Understanding their real world practice
is essential for appropriate design.

Patel et al. [2] investigated the situation of software en-
gineers using ML in their development and identified three
difficulties they encountered: 1) difficulty understanding ML
as an iterative and exploratory process; 2) difficulty under-
standing the relationship between the result (predictions) and
the algorithm; and 3) difficulty evaluating model performance.
Their work provides a starting point to understand the problem
space. However, more work remains to be done to explore the
solution space. Our work contributes to addressing the third
obstacle and part of the second obstacle; that is, evaluating
model performance and analyzing the relationship between
errors and error sources.

Fiebrink et al. [9] conducted an observational study inves-
tigating how end users evaluate and improve a model. These
findings provide information that can guide the design of tools
to support ML. For example, they suggest that more detailed
metrics than overall accuracy, such as error severity, could
enable developers to make cost-sensitive assessment. They
noted that while users were training a model, they were simul-
taneously “trained” by the model and learned to provide more
appropriate training data. However, these particular findings
are constrained to situations in which the user can efficiently
supply training data. It is not clear whether these findings can
be generalized to other ML diagnosis situations.

B. Visualization for machine learning

ML practitioners have been relying on summary statistics
to assess the quality of a model. Metrics such as accuracy
or error rate, precision and recall, and AUC (Area Under
Curve) give people a brief overview of model performance.
The confusion matrix visualization as shown in Figure 1a,
offers a more detailed view by laying out data in a table with
columns as the predicted value and rows as the actual value
such that a cell contains the count of data items where the
predicted value matches that actual value. The modeler’s goal
is to have high counts for cells where the predicted and actual
value are the same. Sometimes the matrix cells are color coded
to highlight the problematic predictions [10]. The problem
with these conventional techniques, however, is that they only
convey the performance of a model and do not inform users
of error severity or causes of the errors. Users have to rely

on separate tools to target data instances that were incorrectly
predicted. They often have no clue what causes these errors
and how to resolve them.

In recent years the research community has been calling
for empowering the role of user in improving ML models
[7], [1], [6]. Fails and Olson [11] proposed interactive ML,
aimed at lowering the expertise barrier in ML and enabling
users to iteratively evaluate and improve a model. A number
of advanced visualization tools have been developed in re-
cent years. SmartStripes [12] helps users interactively select
features. EnsembleMatrix [10] converts the obscure activity,
model ensembling, to an engaging visual interaction, and
enables people to experiment with various combinations of
models to optimize the result. ManiMatrix [8] empowers users
to indicate their error tolerance, and lets user interactively
steer a model to their preference. ModelTracker [4] provides
an intuitive interface for performance analysis and debugging.
Like us the designers of ModelTracker seek to facilitate ML
diagnosis. The tool itself is limited to binary classification
problems. In our study we include these visualizations as probe
materials. By talking to participants about how they would
use these visualizations, and having them act out a diagnosis
scenario, we can better understand what works and what does
not. They also help us seek inspirations for new visualizations
to support ML diagnosis.

III. STATIC DESIGN PROBE STUDY

To understand how developers diagnose an ML model and
to explore ideas for visualizations, we conducted a design
probe study [13]. We presented participants with state-of-the-
art visualizations from the literature1, and asked how they
would use them to understand and diagnose a model. We also
asked what information was important during ML diagnosis,
and what was missing from the visualizations. Using specific
instances of ML visualizations provided a common ground for
discussion, and exposing participants to multiple visualizations
gave them the opportunity to indicate which were useful,
which could be improved, and which were not useful.

A. Participants

We recruited 12 ML practitioners (10 male, 2 female;
age ranges from 24 to 49 years old, M=33.5) from a large
international company in the US. When asked to self-rate their
ML knowledge on a scale of 1-10, participants’ ratings ranged
from 3-8, with an average of 5.8. All interviews but one were
conducted face-to-face. The one not face-to-face was with a
participant who was not in the US, and so was interviewed
using a video conference system with a shared screen for
material sharing. Participation was voluntary, with no reward.

B. Procedure and Probe materials

In our search for existing visualizations, we reviewed papers
in several major publications in the area of design, visualiza-
tion, and machine learning, such as ACM CHI, ACM IUI, and

1The original authors of these visualizations gave us permission to use, and
customize their visualization in our study.



Fig. 1. Visualizations as probe materials. (a) shaded confusion matrix (b) ManiMatrix (c) learning curve (d) learning curve of multiple models (e) McNemar
Test matrix (f) EnsembleMatrix (g) Customized SmartStripes (h) Customized ModelTracker (i) confusion matrix with sub-categories (j) force-directed graph
originating from McNemar Test matrix

IEEE InfoVis. When searching for visualizations we did not
limit our collection to those for model diagnosis only; instead,
we included tools that were used in various phases in a ML
pipeline. For example, SmartStripes [12] is used in feature
selection; Confusion Matrix and the Learning Curve convey
model performance. To compare two models, we found the
matrix for McNeMar Test [14]. To compare ensemble multiple
models, EnsembleMatrix [10] provides an interactive interface.
And ModelTracker [4] is designed to diagnose model errors.
ManiMatrix [8] enables users to interactively improve model
performance by indicating error tolerance. Figure 1 a-h shows
the eight existing visualizations.

We also mocked up two visualizations based on suggestions
from two pilot studies with researchers in our internal group.
The first one was a variant of a traditional confusion matrix.
It differs in that it decomposes each cell to sub-cells, each
representing a cluster of data (see Figure 1i). The idea origi-
nated from participants’ desire to know which data points the
number in each cell referred to. We wondered if users could
gain extra information about model performance by viewing
the performance of different clusters of data rather than the
entire data set. Here we used K-means for clustering, but
that choice was arbitrary. What we were really interested in
was how participants perceived the idea. Another visualization
mock up was based on the McNemar Test matrix. The idea
was similar; instead of displaying an abstract number in each

cell, the graph visualizes data instances (see Figure 1j). In
the center of the graph lies two model nodes. Other smaller
nodes represent data instances. Their positions are driven by
force: attraction force if the instance is correctly predicted and
repelling force if incorrectly predicted. Like the McNemar Test
matrix, the instance nodes end up in four clusters: correctly
predicted by both models, incorrectly by both models, cor-
rectly by one model but incorrectly by the other. The difference
is this graph enables the user to drill down into instances.
With these two additional visualizations, all together we had
ten static visualizations that were discussed with participants.

There are three reasons to include such a wide variety of
visualizations. First, while ML diagnosis is one stage of the
whole pipeline, it connects closely to other stages: it examines
the errors that occur in any stage. For example, an error in fea-
ture selection may result in missing features; an error in data
cleansing may cause data corruption; and an error in model
ensembling may cause under-optimized model combination.
Therefore understanding how users address problems in other
stages can benefit the design of visualizations for model
diagnosis as well. Second, since different tools are designed
for different purposes, they often emphasize some features
while lacking others. This is not a criticism of the state-of-
the-art visualizations—it is almost impossible to support such
a complex task with a single tool—rather, differences in the
features of each visualization allowed us to discuss with our



participants the relative importance of different features with
respect to the diagnostic support they offered. Third, this probe
study is exploratory, we sought inspiration for new designs
rather than confirmation of the benefits provided the specific
visualizations used as probes. The variety of visualizations we
discussed with our participants provided an opportunity for us
to gather more and more diverse ideas from them.

Interviews can flounder not only because of lack of a shared
understanding between the interviewer and interviewee, but
also because they move into generalities rather than specifics.
To mitigate this tendency, and to further ground the conver-
sation in specifics, we created a concrete ML scenario. The
scenario describes a specific ML problem and the associated
dataset. We used the dataset from UCI open dataset [15]. The
task was a multiclassification problem: to predict students’
course performance using the available data. We built a model
but did not diagnose and improve it. We customized most
visualizations to the data (except for Figure 1 f and g because
they are data bound and algorithm driven).

In the interview, we presented the scenario and asked
participants whether they had previously encountered similar
situations. We then presented them with the visualizations one
by one, in a random order to counterbalance the order effect.
Each visualization was accompanied with a text explanation.
If a participant had difficulty understanding the visualization,
the interviewer would provide additional explanation. Note
that knowing what additional information was needed to
understand a visualization itself also provided insights into
areas that new designs might address.

The interview was semi-structured. For each visualization
we asked: (1) “what information did you learn about the
model from the graph?” and (2) “what information about the
model would you like to see but was not presented here?”
New topics emerged as participants focused on certain features
of a graph. Interviews were audio recorded and each lasted
from 50-90 min. Note, although we followed many aspects of
standard interview practice, our goal is design exploration and
inspiration rather than confirmation or assessment.

C. Emergent Themes

All interviews were transcribed. Lacking a priori themes,
we used an open coding approach [16] to identify emergent
themes and design ideas. This resulted in seven design themes
to consider when designing aids for ML diagnosis.

a) Overview + Detail: ‘Overview’ refers to the summary
of the overall performance of the model, including metrics
like accuracy, precision and recall. The overview helped par-
ticipants decide if it’s worthwhile to continue debugging a
model: if the accuracy is too low, it may be wiser to try
another ML model. However, our participants told us that
summary statistics could be misleading. For example, in a
multiclassification problem, a single accuracy metric is not
enough. Costs may vary across misclassifications. A high level
of accuracy does not mean that the model is performing well
because it still may have made errors in the most important
classes; conversely, low accuracy doesn’t necessarily mean a

model is performing poorly: it may have confused classes that
are indeed similar, but done well in distinguishing among im-
portant classes. Furthermore, we were told that while summary
statistics convey the presence of errors, they say little about
the possible cause of these errors or severity of the errors.
Our participants reported that they employed multiple tools to
target the errors and determine their priority.

Almost all participants said it was useful to drill down into
data instances. When they saw errors, they wanted to go to
the raw data to look for patterns. For example, the Confusion
Matrix listed the number of instances correctly and incorrectly
predicted in each class, but it “would be good to be able to
trace down what happened in the misclassification ones”.

b) Group and Compare: Another strategy participants
mentioned is to group instances and compare the groups.
We observed participants engaging in two ways of group-
ing. One is to group instances of the same prediction and
see if any common patterns are evident. For example, one
participant said he’d like an aggregated view of all students
incorrectly predicted to receive a particular grade, as these
students might share characteristics that were misleading the
model. Participants also mentioned this strategy when using
visualizations that didn’t support it. For instance, Figure 1h
(customized from ModelTracker [4]) displays data instances
according to prediction confidence, and thus errors are also
distributed. While users could easily examine individual error
instances, it was difficult to analyze sets of errors for patterns.
As one commented, “One way to go through the errors is just
go one by one...but sometimes you can see systematic problems
if you see all these wrongs together. So I wonder if I could
have exploded views somehow that I can see all of the guys.”

Another way is to form two groups of data and compare
different patterns. For instance, in the Confusion Matrix, one
participant stated that he wanted to compare students who
actually got E but were predicted to get B (E-B) with students
who got E and were predicted to E (E-E). These two groups of
students actually had the same class value (E) but were treated
differently by the model. Comparing the two groups might
reveal what was misleading the model. Another participant
suggested comparing students in E-B with students in B-B
(students who were correctly predicted to get a B by the
model), as these two groups were seen “alike” by the model,
although they actually got different grades. The comparison
might reveal features that the model missed. And a participant
also suggested comparing students in B-B and E-E with
students in B-E and E-B; that is, comparing students that were
predicted correctly with those predicted incorrectly. In these
cases, they were looking for differing patterns between the two
groups that might account for the model’s behavior.

c) Data space, feature space, and prediction space:
Information that participants used, or that they wished they
could use but was missing, can be thought of as belonging
to one of the following information spaces: 1) data space, the
raw data instances; 2) feature space, features that were used by
the model; and 3) prediction space, predicted output from the
model. Combining information from any two spaces helps to



TABLE I
DATA SPACE, FEATURE SPACE, AND PREDICTION SPACE

Information space Question Example
Data What are data examples? Spreadsheet
Feature What are features used by models? List
Prediction What are the performance of the model? Learning Curve, Confusion Matrix
Data and Feature How are data distributed along feature values? Tool by SmartStripes [12]
Feature and Prediction How are features influencing predictions? EnsembleMatrix [10]
Data and Prediction How are subsets of data predicted by the model? ModelTracker [4], ManiMatrix [8]
Data, Feature, and Prediction What is causing prediction errors?

answer different kinds of questions about the data and model
(Table I). The visualizations we presented to participants were
all presenting information from one space, or links between
two of the spaces. For example, the Confusion Matrix and
Learning Curves show the performance space. SmartStripes
[12] combines the data space and feature space, and also
enables investigation of the distribution of data along feature
values. It allowed our participants to see if data was sparse
in a feature space, or if data was over concentrated within
a certain value range; both were used as indications that the
feature might be inappropriate. Visualizations that combined
the feature space and prediction space allowed our partici-
pants to ask what features contribute most to the prediction.
This question becomes particularly important when trying to
identify features that led to incorrect predictions. Many of
the visualizations we used display information from the data
space and the prediction space, such as ModelTracker and
ManiMatrix, which show how data are predicted. However,
none of the existing visualizations displays information from
all three spaces. Indeed, when asked what information was
missing but could be useful for model diagnosis, participants
would often refer to the third space of information that was
not presented in the visualization currently being discussed.

d) Diagnostic assistance: Participants wanted assistance.
For example, they would like the visualization to highlight
places that were problematic and indicate errors requring
immediate attention. A typical strategy used to address the
limited time they had to training the model was to prioritize
errors needing resolution. They spent most of their time
debugging high cost errors, or those that could lead to the
most significant improvements in model performance. ML has
some rules to judge if there is a problem and what the severity
of that problem might be. A classical example is in cancer
diagnosis: a false negative has more severe consequence than
a false positive. So a visualization might render false negative
errors in a more prominent way so that practitioners can first
look into why the model did not identify the cancer. Another
strategy was to focus on high-confidence misclassifications.
Such misclassifications are problematic when the cost of errors
is high. A visualization could map confidence to a visual
feature to allow this information to be readily perceived.

Our conversations with participants indicated that some-
times the visualization would highlight the wrong thing, which
made it difficult for our participants to read the visualization,
and sometimes led to confusion and misinterpretation. Since

visualization is largely data-driven, it is natural to encode
visual cues by quantity. However, designers need to be careful
about the meaning of quantity in ML. For example, in the
confusion matrix, larger numbers in diagonal cells means more
instances were correctly predicted, which is ‘good’, whereas
larger numbers in off-diagonal cells means lower accuracy,
which is ‘bad’. Most often, however, both types of cells are
encoded in the same color shade. If a model has a relatively
good performance, diagonal cells will be darker and thus
more prominent than off-diagonal cells and capture user’s
immediate attention, but in fact people are more interested in
misclassifications when they are trying to improve a model. So
while the color shading gives a good indication of overall per-
formance, our participants did not find it helpful in directing
their attention appropriately for diagnosis. Similar problems
happened when comparing performance of two models. For
instance, ManiMatrix [8] uses green and red to encode increase
and decrease in cells of two confusion matrices. Two of our
participants pointed out the inconsistency problem. As one
of them commented, “it’s confusing that you have the two
increase is good or increase is bad depending on whether
you are here or there. For me instead of coding whether it’s
increase or decrease, I would just code whether it’s better
or worse ... I’m having a hard time getting my head around.
so ultimately I just ignore the color and look at the number
again.”

e) Interactive model diagnosis: Participants suggested
that the diagnosis process is largely exploratory: they observe
an error, come up with a hypothesis, make modifications, and
re-run the model to test the hypothesis. In this way, they
iteratively validate their hypotheses and improve the model.
In line with this they wanted the visualization to let them to
modify the model as they found possible error sources. For
instance, if they suspect a feature is misleading, they may just
remove the feature and retrain the model to see if it improves
performance. As one participant said, “It will be good if I
can define my own features. For example, if I can remove
features that are problematic and add features back which
were removed before... I would like to control.”

f) Scalability: ML deals with big data and therefore
participants put a lot of value on the visualization’s ability
to scale up to a large amount of data. Specifically, they asked
how well it could accommodate a large number of training
and test data instances, and how well it could accommodate a
large number of features. And in the case of multiclassification



problem, how it would accommodate a large number of
classes.

g) Psychological issues: Apart from the information
required for model diagnosis, we noticed that psychological
issues also affected how participants perceived a visualization
– something that has often been neglected in prior research.
One repeated theme was trust. If the visualization did not
provide sufficient transparency to reveal how it was related to
the ML model, participants had trust issues. When presented
with Figure 1b, three participants said they could not trust
it because they did not understand how the model learned
user preferences and retrained itself. “I don’t know how this
miracle is done. The confusion matrix you have here is exactly
the same number as what you ask for, not more not less. This
sounds like miracle”. One approach to this problem is to make
the process more transparent. As in this case, the tool was
actually modifying the cost matrix to get closer to the user’s
expectation. One participant even suggested a solution “If it
could visualize the cost matrix as well, it would help me better
understand the mechanism behind it.”

IV. INTERACTIVE DESIGN PROBE STUDY

The first study offers rich insights into the information
needed for ML diagnosis. But since it relied on paper artifacts,
we were limited in exploring how practitioners used diagnostic
information. Participants noted that ML diagnosis is largely
a data-driven, multi-step process. As next-step interactions
are often driven by emerging findings, participants in the
first study had difficulty explaining what they would do next
without seeing the real data. For example, when asked what
kind of patterns they would look for when drilling down into
data, they often couldnt say: “it is hard to say without looking
at the data. It could be anything, or it could be nothing”.

Therefore, in the second phase, we developed an interactive
visualization prototype based on insights from the first study
and conducted an interactive design probe study. This study
enabled us to observe how participants dynamically diagnosed
a model, enriching our findings from the first study.

A. Prototype

We prototyped an interactive visualization tool, VizML
(shown in Figure 2). The prototype consists of multiple
coordinated views: 1) a confusion matrix, with color shading
encoding the number of instances in a cell. Note that we use
two color scales for diagonal cells (correctly predicted data)
and off-diagonal cells (incorrectly predicted data) as a remedy
for problematic highlighting as discussed previously. 2) A
scatterplot, showing data instances distributed along prediction
confidence (x axis) and misclassification cost (y axis). 3) Bar
charts showing data distribution along feature values. And 4) a
table displaying data instances and their attribute values. None
of the views is completely new in itself, and require little in
the way of learning efforts from ML practitioners. We use
an example usage scenario, gleaned from observations in the
second study, to demonstrate the use of the tool.

An analyst was using VizML to diagnose a model trained
for predicting student performance. He observed that in the
confusion matrix, of the 38 students who got an E, 25 were
predicted correctly and 13 were predicted to get a B. The
model mistakenly distinguished the two groups of data while
they should be treated the same. He hypothesized that there
might be some features that misled the model. To test the
hypothesis, he selected the two cells in the matrix, which were
then highlighted in different colors in all views (Figure 2). In
the feature bar charts, he observed that the two groups varied
significantly in the feature fail, which means the number of
classes students failed in the past. All 13 students who were
predicted B had no class failure in the past, whereas the other
25 students who were predicted E had at least one class failure
before. He hypothesized that the feature fail was misleading
the model, and that seemed to well explain the why the 13
students were predicted to get better grades.

The design aligns with the findings from the first study in
several ways: 1) The coordinated views allow users to zoom
into details of interest as well as have an overview of the
context; 2) Users can select and highlight multiple subsets
of data for side-by-side comparison; 3) The views show the
prediction space (confusion matrix and precision-cost scatter
plot), feature space (feature bar chart) and data space (data
table); and 4) the color coding in the confusion matrix and
spatial layout in the scatter plot help users prioritize errors.

B. Method

We recruited four users, three from the first study, to provide
feedback on our early prototype. The study used the same
scenario, data, and procedure as before, except that participants
were able to fluidly interact with the data. We observed how
they used the prototype, noted the thoughts they expressed
while doing so, and asked them for more details on why they
did what they did, and how it helped them. We also listened
for confusions, and asked them what was missing that might
aid them in diagnosis. Each interview lasted for about one
hour and was audio recorded.

C. Result

While feedback from four participants should never be taken
as more than indicative, in general their feedback was positive
regarding utility of VizML for ML diagnosis and its ease of
use. More specifically, all participants commented that VizML
allowed them to explore the data in a way that would facilitate
diagnosis, and indeed we observed this as they interacted with
it. As one participant, who was also in the first phase study
conducted three weeks earlier, commented, “Right, this is what
we talked about [in the static probe study], [we need to]
use the tool to navigate through data.”. Another commented
positively on the grouping and comparing support, “This
visualization can capture the differences in the examples; I
can see that being valuable.”. Participants also liked the way
that the visualization helped prioritize the errors because the
confusion matrix and the scatter plot “help quickly get to the



Fig. 2. VizML consists of a confusion matrix, a scatter plot, bar charts, and a data table. Two groups of data are highlighted here: students who actually got
an E and were predicted correctly, and students who actually got an E but were predicted to get a B.

errors”. When asked if they would use the tool in their real
work, all participants indicated that they would like to see
what their real data would be like in the tool.

An area of concern raised by participants was scalability.
For example, they noted that only a limited number of classes
could be displayed in the confusion matrix, and that the list of
bar charts would become to long to be useful if the number
of features is large.

When participants were interacting with the tool in model
diagnosis, we observed several primary activities:

a) Understanding overall model performance: Partici-
pants began with an overview of the model’s performance
before diving into details of errors. They found the confusion
matrix and scatter plot useful in that it provided richer infor-
mation than overall accuracy. For example, three participants
noted that the model tended to over-predict students with low
grades and under-predict students with high grades, something
not visible through overall accuracy. The scatter plot also
enabled users to assess how “bad” the situation was. For
example, they could take different approaches when wrong
predictions were of low confidence or high confidence.

b) Identifying and prioritizing errors: When identifying
errors, participants did not expect to find and correct all errors.

Instead, they made prioritized. They started with errors of
highest “impact”: errors that either caused most reduction in
model accuracy, or that had the highest cost. They explained
that a model can never be perfect, and that they needed
to train a model “well enough” within a specific period of
time. Starting with high-impact errors is more time-efficient.
Participants used the confusion matrix to find errors of biggest
size, and used the scatter plot to identify errors of highest
cost, and combined them to make a decision. For instance,
participants noted that a large number of confusions existed
between students who got B and C, but decided that the
problem was more severe in students who got E but were
predicted to B because the cost was much higher.

c) Hypothesizing error sources: In this stage, partici-
pants generated possible reasons for errors. Being able to ex-
plore and navigate between data and model helped participants
target error sources. For example, in the confusion matrix,
participants selected the cells E-B and E-E, and compared
the feature space of two subsets to understand what was
making the model generate different predictions. Participants
also selected cells of E-B and B-B, in an attempt to understand
why the model made the same prediction for the two subsets
of students.



d) Changing model parameters and re-training: To val-
idate their hypotheses, participants said they need to make
appropriate modifications and re-train the model. For example,
they would modify the features they used, or adjust the
training data set. Since our tool is not integrated with ML
development environment, full iterative diagnosis and testing
was not possible during the study. But our observations suggest
that an integrated environment would be desirable, and a
system that tracks and manages hypothesis testing is needed.

V. DISCUSSION AND CONCLUSION

Our starting point was to make it easier for ML practitioners
to diagnose ML models for use in software applications. Such
practitioners have expertise in software development rather
than the in the development of ML models.

In designing tools to facilitate ML diagnosis for non-expert
ML practitioners, a challenge lies in addressing the tension
between exposing details of the model and being generalizable
to various ML algorithms. For example, work such as [17]
well presents the process of how data instances are predicted
by a decision tree, but it is bound to a specific algorithm. Our
goal is to design a generally applicable tool that facilitates
understanding and diagnosis of an ML model.

From this starting point, we needed to decide what our
design process should be. User experience design is a suf-
ficiently mature field that we had many options to choose
from. We could have conducted a field study observing how
users routinely diagnose a model in their real work. Such
a study would have provided us with information about the
diagnostic tasks of ML practitioners using their chosen tools
and visualizations, from which we could have derived design
requirements. However, as is often the case in design, the
pragmatics of our situation did not allow for such lengthy
study—participants were not willing to be observed for ex-
tended periods of time either due to personal preference or
due to work practices that did not allow them to be regularly
co-located with an observer, or much of their work was highly
confidential. We could have designed a visualization based
on our best guesses and then conducted an evaluative study
to see if it supported ML diagnosis. We could even have
compared our design to an existing visualization. While this
would have given us much freedom in our design choices,
we wanted to be informed by our target users and by design
work that had already been done by others researching ML
visualization. We needed to find a method for engaging with
our target users, engaging with the existing ML visualization
research, and engaging together in a creative design process.
For these reasons we choose to use existing visualizations as
design probes with ML practitioners.

Because we were engaging with practitioners in a special-
ized domain, and risked falling into shared generalities or
miscommunication due to lack of common ground, we used
an ML scenario and dataset to make our conversations with
practitioners very concrete. One downside to this approach
is that our scenario may have been too simplistic, and the

dataset insufficiently large to more deeply address issues of di-
agnosing ML on massive datasets. The specific visualizations
chosen also influenced the content of our conversations with
practitioners. The variety of visualizations covered mitigated
the latter downside, and issues of scaling were discussed and
did emerge as an important theme in both studies. Having
static images results in loss of value of some visualizations
which were designed to be interactive, but the static probe
approach proves to be cost-effective and enables us to gain
insights into user information needs rapidly and effectively.
The loss of interaction space design is then complemented by
the interactive design probe.

In our interactive probe study, we explored several of these
themes by designing and prototyping an interactive visualiza-
tion called VizML. In particular we explored the usefulness
of multiple coordinated views in displaying the three ML
information spaces; with some views providing an overview
of an ML information space and other coordinated views
providing further detail. Participants reported they could easily
navigate and target needed information with VizML. We found
the need for a visualization that allows ML practitioners to
engage in iterative cycles of exploratory observation, hypoth-
esis formation and hypothesis testing. We identified primary
activities as a means to help us develop a better conceptual
model of tasks we want to support, which proves to be an
effective way to ensure effectiveness of technology [18].

One concern with VizML raised by our participants is
whether it can scale up. There are a few design moves we
could make to mitigate issues of scaling to large data sets.
We can incorporate zooming techniques and create a zoomable
confusion matrix [19], or design ranking algorithms on the bar
charts to rank the information gain by each feature (weight of
feature in the model), or by similarity in the feature distribution
when comparing groups of data, or strengthen visualization
assistance by highlighting the most problematic errors.

We plan on using the insights gleaned from this study to
update our design and conduct longer-term investigations of
VizML. We are interested in how patterns of usage vary in
real world practice and in different application domains. To
this end, we have deployed the tool at a large US company as
a web service. Company employees have access to it and can
use it to examine their own data and models.
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